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Abstract

A numerical study on reduction of fluid forces acting on a square cylinder (prism) in a two-dimensional channel using

a control plate is presented in this paper. In order to control the flow around the square cylinder, a control plate is

placed upstream. Fluid forces acting on the square cylinder, vortex shedding frequency and flow patterns are

systematically investigated for different heights and positions of the control plate. The control plate height is varied

from 10% to 100% of the square side width. For each height, the perpendicular distance between the control plate and

the cylinder is varied from 0.5 to 3.0 times of the square width. The Reynolds number considered is 250, based on the

square width, and the maximum incoming flow velocity. The technique used for the numerical analysis is the lattice

Boltzmann method. Numerical studies show that not only is the drag on the square cylinder significantly reduced by the

control plate, but also the fluctuating lift is suppressed as well. The optimum position of the control plate for

minimizing the drag on the square cylinder is found for each control plate height.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Any body moving in a fluid experiences fluid forces. Among them, the resistance has been the major concern, since it

directly relates to the energy required to move the body in the fluid. How to reduce the resistance (and thus save energy)

remains a big challenge for mechanical engineers.

Besides resistance, the fluctuating lift is another concern. When a body is moving at a large Reynolds number, the

vortex shedding behind the body becomes oscillatory, resulting in fluctuating forces acting on the body. Among them,

the vertical fluctuating force, i.e. the fluctuating lift, induces the vertical vibration of the body. It is 1 of the main

mechanisms that cause flow-induced vibration.

Flow control aims to reduce the resistance and the magnitude of the fluctuating force acting on the body. An effective

flow control may save energy, increase propulsion efficiency and also reduce the vibration of the body.

A variety of ways have been designed to achieve better flow control. Among these methods, the approach to put a

small bluff body in front of a big body is reportedly able to effectively suppress the fluid forces. This idea comes from

the experimental studies by Morel and Bohn (1980), Igarashi (1982) and Koenig and Roshko (1985). Their experiments

show that placing 2 bluff bodies in series in a uniform stream may sometimes lead to a total drag reduction compared to
e front matter r 2005 Elsevier Ltd. All rights reserved.

uidstructs.2005.07.002

ing author.

ess: zhouli@dlut.edu.cn (L. Zhou).

www.elsevier.com/locate/jfs


ARTICLE IN PRESS

xup

L

s D

D
H

u=0, v=0

u=0, v=0

H/ 2

umax

xb

h

x 

y 

Fig. 1. Schematic of simulation model.
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that of either body alone. Using this idea, a number of methods to reduce the drag and the side force were developed.

Lesage and Gartshore (1987) successfully suppressed both the time-averaged drag and fluctuating forces on a bluff body

by putting a small rod upstream. In their experiments, they used a flat plate, a square or a circular cylinder as the bluff

body. The idea of flow control by the control rod in the separated shear layer was proposed by Igarashi and Tsutsui

(1989). They found that by inserting a small cylinder in the shear layer near the main cylinder, a forced reattachment of

the separated shear layer from the cylinder was realized, and the drag of the main cylinder was decreased. This idea

was copied by Sakamoto et al. (1991) soon after. Igarashi and Ito (1993) reported the idea of flow control by the control

rod in the upstream of the square prism. Drag reduction of the square prism was investigated in their experimental

studies. Igarashi (1997) again presented his study of drag reduction on a square prism by use of a control rod. He

also gave the critical gap distance between the prism and the control rod, at which the vortex shedding from the

prism disappeared. Sakamoto et al. (1997) performed further investigations on the flow past a square prism with

control. They put a flat control plate upstream and reported that the control plate suppressed the flow forces acting on

the square prism.

All these studies have confirmed the effectiveness of this type of flow control. However, they are all based

on experiments. A literature search shows that there are few numerical studies on the flow around a controlled

square cylinder. Compared with experimental studies, numerical simulations are both cost-effective and more

informative.

The objective of this paper is to numerically study the suppression of fluid forces acting on a bluff body by the

use of a control plate. A flat plate is placed upstream of the square cylinder in order to control the approach flow

to the square cylinder. The control plate height is varied from 10% to 100% of the square width (D in Fig. 1). For

each height, the perpendicular distance between the control plate and the cylinder ranged from 0.5 to 3.0 times of

the square width. The Reynolds number considered is 250, based on the square width and the maximum incoming

flow velocity. The drag acting on the square cylinder and the whole system (square cylinder together with the control

plate) as well as the fluctuating lift on the square cylinder are studied. In addition, the mechanism of reduction of

the hydrodynamic loading around the square cylinder and the control plate are discussed, based on the visualized

flow patterns.

We carefully compared various numerical methods used for solving Navier–Stokes (N–S) equations. We employ the

lattice Boltzmann Method (LBM) because it is easy to implement and gives fast convergence. Conventional

Computational Fluid Dynamics (CFD) methods start with discretizing the macroscopic N-S equations. But LBM is

based on microscopic models and mesoscopic kinetic equations (Chen and Doolen, 1998). In LBM, the fluid field is

discretized by a group of microscopic particles. The density distributions of these particles perform 2 types of motions:

collision and streaming. The motions are governed by the Boltzmann Transfer equation in statistical mechanics. It is

provable that the N–S equations can be derived from the Boltzmann Transfer equation by multi-scale analysis. The

numerical implementation of LBM and the treatment of boundary conditions are easy. From published work (Chen

and Doolen, 1998; Breuer et al., 2000) we can see that the simulation results using LBM agree well with other

traditional method. Another feature of this method is that it is very well suited for parallel computing. Thus, the interest

in LBM is fast increasing. The interested reader is referred to the review paper by Chen and Doolen (1998) and the

excellent book by Wolf-Gladrow (2000).
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2. Problem statement

Consider a two-dimensional square body in a channel, as shown in Fig. 1. The width of each side of the square is D.

Throughout the paper, the dimension of the channel is represented by a length L and a width H. The centre of the

square is positioned on the centre-line with coordinate at (xb, H/2). A control plate of height h is placed in front of the

square cylinder. The distance from the frontal surface of the square cylinder to the control plate is s. Inlet and outlet

boundaries are located at the left and right ends, respectively. The remaining boundaries are no-slip wall boundaries.

The details of the boundary conditions will be discussed in Section 4.1.

Using (u; v) to denote the macroscopic velocities, the governing equations for the incompressible fluid flow are

momentum conservation

qu

qt
þ ðurÞu ¼ �

1

r
rpðx; y; tÞ þ nr2u, (1)

and continuity

r � u ¼ 0, (2)

subject to suitable boundary conditions. Here pðx; y; tÞ defines the pressure field; n is kinematic viscosity. The nabla
operator is r ¼ ðq=qx; q=qyÞ.

The drag coefficient Cd, lift coefficient CL and pressure coefficient Cp are defined by

Cd ¼
FD

0:5r0u2maxD
, (3)

CL ¼
FL

0:5r0u2maxD
, (4)

CP ¼
ðp � p0Þ

0:5r0u2max
, (5)

where FD and FL are resistance and lift respectively, r0 is initial fluid density, umax is the maximum velocity at the inlet,

and p0 is a reference pressure. The resistance coefficient of the total system is similarly defined by

CDT ¼
FD þ FD;pl

0:5r0u2maxD
, (6)

where FD;pl is the drag on the control plate.

Other nondimensional parameters to be used are the Reynolds number Re, nondimensional time t0, Strouhal number

St. They are defined by the following equations:

Re ¼
umaxD

n
, (7)

t0 ¼
tumax

D=2
, (8)

St ¼
fD

umax
, (9)

where f is the frequency of vortex shedding.
3. Solution using of LBM

We now turn to solving the N–S Eqs. (1) and (2). As mentioned in the introduction, the LBM can solve the N–S

equation indirectly. In LBM, the particle density distributions are stored on the lattice nodes. At every time step, the

density distributions of the particles either ‘‘move’’ from 1 node to the other, or ‘‘remain’’ at the original position. In the

present study we consider a two-dimensional square lattice with 9 velocities D2Q9 model shown in Fig. 2. These 9
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motion directions are denoted as eaða ¼ 0; 1; :::; 8Þ. The velocities ca at each node are then given by

ca ¼ cea ¼

ð0; 0Þ; a ¼ 0

c cos a�1
2
p

� �
; sin a�1

2
p

� �� �
; a ¼ 1; 2; 3; 4ffiffiffi

2
p

c cos a�5
2
pþ p

4

� �
; sin a�5

2
pþ p

4

� �� �
; a ¼ 5; 6; 7; 8:

8><
>: (10)

In the above equation, c ¼ dx=dt, where dx and dt are the lattice separation and the time step.

The lattice Boltzmann equation with BKG approximation can be written as

f aðx þ caDt; t þ DtÞ � f aðx; tÞ ¼ �
1

t
ðf aðx; tÞ � f eqa ðx; tÞÞ; a ¼ 0; 1; 2; . . . ; 8, (11)

where f a is the single particle mass distribution function in the a direction, t is the time, Dt and caDt the time and space

increment, respectively; t is the relaxation time due to collision. f eqa is the local equilibrium distribution function, which

can be given as

f eqa ¼ rwa 1þ
3

c2
ca � uþ

9

2c4
ðca � uÞ

2
�

3

2c2
u � u


 �
; a ¼ 0; 1; 2; :::; 8 (12)

with w0 ¼ 4=9, wa ¼ 1=9ða ¼ 1; 2; 3; 4Þ and wa ¼ 1=36ða ¼ 5; 6; 7; 8Þ.
The macroscopic mass density r and the velocity u are the summations of the distribution functions

r ¼
X8
a¼0

f a; ru ¼
X8
a¼0

caf a. (13)

Using the Chapman–Enskog expansion, i.e. multi-scale analysis, it is mathematically provable that the LBM Eq. (11)

can recover the N–S equation to the second order of accuracy (Chen and Doolen, 1998) if the pressure is defined by

p ¼ rc2=3 (14)

and the kinematic viscosity is defined as

n ¼ ðt� 0:5Þc2Dt=3. (15)

Eq. (11) is an algebraic equation. Given the distribution function f a at time t, we can obtain an estimate of its value at

the next time step, as implied by Eq. (11). With f a known, all macroscopic quantities can be evaluated from Eqs. (13)

and (14). In conventional CFD methods, we often need to solve a Poisson equation to find the pressure p. In LBM,

however, solving Eq. (11) yields all the information we are interested in.

The basic algorithm consists of 2 processes: streaming and collision. In the sequence of streaming, particles move to

the neighbor nodes according to the lattice velocities. During the process of collision, the relaxation rule secures the new

equilibrium states of particles.
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4. Numerical experiments and code validation

4.1. Set-up of numerical experiments

The problem under consideration is the flow around a square cylinder with a control plate placed upstream of the

cylinder, as shown in Fig. 1. A channel with a blockage ratio H=D ¼ 8 is selected for the computational domain. Finite

inlet and outlet lengths are chosen to replace the infinite channel domain. It is usually difficult to give the exact values of

the size of the computational domain so as to cancel the inlet and outlet boundary effects; but there are some rules and

available data that one can follow.

It is well known that the forces acting on the bluff body and the flow patterns around it are influenced by the in-flow

profile, in-flow length and out-flow length (Davis et al., 1984; Sohankar et al., 1996). These influences become negligibly

small as the body is located far away from the inlet and outlet. The study conducted by Sohankar et al. (1996) shows

that to minimize the influences of in-flow and out-flow length, the minimum values of upstream and downstream extent

should be over 11D and 30D, respectively. Here D is the side width of the square cylinder. In the present study, the in-

flow length is set to 12D and the total length of the domain is set to 50D.

A parabolic profile with the maximum velocity umax is applied at the inlet, on the left end of Fig. 1, in order to

simulate a fully developed laminar channel flow. The same velocity profile is imposed at the outlet, at the right end. The

flow at outlet has little effect on the flow upstream when the outlet is set far enough downstream of the cylinder (out-

flow lengthX30D). No-slip wall boundary conditions are applied to the remaining boundaries, including the surfaces of

the square and the control plate, as well as the top and bottom boundaries of the channel, where a bounce-back

boundary treatment is used. Initially the velocities at all nodes, except the nodes at inlet and outlet are set to zero, and

an initial pressure pini ¼ 0:2=3 is imposed at all nodes. In order to make the flow asymmetric initially, a small

disturbance of velocity is applied to a particular point (not at the centreline) at the beginning; after several time steps,

this disturbance is cancelled.

Another important factor to be considered before any numerical experiment is mesh density. The mesh density

determines the accuracy of the results. We conducted some preliminary studies on mesh density. The parametric studies

lead to the conclusion that 40 elements applied on each side of the square cylinder of width D are good enough to

accurately calculate the hydrodynamic parameters and to capture the details of the flow patterns. In total 2000
 320

elements are used.
4.2. Code validation

The code is validated against the problem of flow past a square cylinder without control in the range of 10pRep250.

The results are compared with those presented by Breuer et al. (2000). Two parameters are validated: time-averaged

drag coefficient and Strouhal number.

Time-averaged drag coefficient. One of the most important parameters for flow around an obstacle is the drag

coefficient Cd . Fig. 3 shows the time-averaged drag coefficient Cd defined in Eq. (3) against Reynolds number. The solid

line represents the results obtained from LBM, and the points denote results obtained by the finite volume method

(FVM) (Breuer et al., 2000). The figure shows that the results obtained by LBM are in generally good agreement with

those obtained by FVM. In the region of small Reynolds numbers (Rep60), the drag coefficient varies strongly with

Re. As the Reynolds number becomes larger (Re460), the drag coefficient varies mildly with Re. However, a

discrepancy occurs at low Reynolds number (Re ¼ 10). The reasons for this discrepancy may lie in the mesh densities

and the mechanism of the drag components. 40 elements are used along each side of width D in the present study, while

100 elements were used in Breuer’s study. When Re is small, the viscous component and the pressure force contribute to

the total drag in the same order of magnitude. In that case, 40 elements on each side of the square cylinder are sufficient

to obtain the pressure force, but a finer resolution is needed to capture the component of drag caused by viscosity.

However, when Re is large, the dominant component is the pressure force, which accounts for more than 95% of the

total drag. In this case, our mesh density is good enough to compute the drag.

Strouhal number. The Strouhal number defined in Eq. (9) is another important parameter, determining the shedding

frequency of the Kármán vortex street in the wake. The characteristic frequency f is determined by a spectral analysis of

time series of the lift coefficient. The computed Strouhal number is also compared with the Breuer et al. (2000) result as

shown in Fig. 4, where LBM results are represented by a solid line with triangles, and the FVM results are illustrated by

the diamond-points. It can be seen that the results of both methods agree well. At relatively low Reynolds number,

Reo150, Strouhal number increases with increasing Reynolds number. At relatively high Reynolds number, Re4150,
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Strouhal number decreases with increasing Reynolds number. The error ((St,FVM�StLBM)/StLBM) is about 2.21%,

3.52%, 4.55% and 2.40% for Re of 100, 150, 200 and 250, respectively.

This result is also used as the baseline for the comparison between the flow around a square cylinder with control and

without control. Flow around a square cylinder was also studied by Davis et al. (1982, 1984), Sohankar et al. (1996),

Bernsdorf et al. (1998) and Cheng and Liu (2000).
5. Results and discussion

In this section, the effect of the control plate on the hydrodynamic parameters such as typical flow patterns, pressure

distribution and the drag on the cylinder are discussed.

5.1. Typical flow patterns

Firstly, the control plate height is fixed, while its position is changed in order to investigate the effect of the position

on the flow control. Typical flow patterns in vorticity contour plots for different control plate positions are shown in
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Fig. 5. The corresponding variation of fluctuating lift against time and the corresponding spectra are given in Fig. 6.

Secondly, the control plate height is varied with the position unchanged to investigate the effect of the height on the

flow. Typical flow patterns described by the vorticity contour versus control plate height are shown in Fig. 7. The

related fluctuating lift and its spectrum analysis are plotted in Fig. 8. The time selected for the flow patterns is at a

nondimensional time of t0 ¼ 250.

From Fig. 5, an alternating Kármán vortex street is observed in the wake region downstream of the square cylinder.

However, compared to the flow without control (Fig. 5(a)), the width of the wake downstream of the square cylinder is

narrow when the control plate is used (Figs. 5(b)–(e)). The number of the vortices shed behind the square cylinder is

also different: there are 6 vortices within the considered wake region of the square cylinder without control (Fig. 5(a)),

while 7 or 8 vortices appear in the region downstream of the square cylinder with control (Figs. 5(b)–(e)). Another

notable phenomenon is that the incoming flow to the square cylinder is entirely different when the control plate is

utilized. The front surface of the cylinder is exposed to the wake region formed by the control plate. When the spacing

between the 2 bodies is not too large, for example, s=D ¼ 0:5, 1.0 or 2.5 (Figs. 5(b)–(d)), there are 2 stationary vortices
between the 2 bodies. The size of the vortices between the 2 bodies is increased as the spacing is increased. When

s=D ¼ 2:5 (Fig. 5(d)), the size of the vortices reaches a maximum value. Moreover, the width of the vortex street behind

the square cylinder is also the narrowest among the 5 cases. This illustrates that the control plate achieves its best effect

for such a position. If the spacing is increased to s=D ¼ 3:0 (Fig. 5(e)), the flow pattern is qualitatively changed. Besides
the Kármán vortex street in the wake of the square cylinder, obviously alternate vortex shedding also occurs behind the

control plate. This is due to the fact that the Reynolds number of the control plate is 75 for such a plate height (the

critical Reynolds number of a flat plate with the present domain configuration is 40), and the behavior of the control

plate becomes independent due to the relative large spacing. Therefore, it is not strange that a Kármán vortex street

forms behind both the control plate and the square cylinder.

Fig. 6 shows the lift coefficient of the square cylinder defined in Eq. (4) against time and the corresponding spectra for

various positions of the control plate. The lift acting on the square cylinder is consistent with the flow pattern around

the cylinder. The near-sinusoidal variation of the lift curve indicates the periodic nature of vortex shedding from the

cylinder. The negative peaks are caused by the shedding of vortices from the upper side of the cylinder, and vice versa.

Compared to the lift on the square cylinder without control (Fig. 6(a)), the fluctuating lift on the controlled cylinder is

well suppressed (Figs. 6(b)–(e)). The amplitude of the fluctuating lift is about 1.0 when the flow is not controlled. When

the control plate is placed upstream the cylinder at s=D ¼ 1:0 (Fig. 6(c)), the amplitude of the lift is about 0.25. The
amplitude is further decreased to about 0.15 if the spacing is increased to s=D ¼ 2:5 (Fig. 6(d)). However, the lift
amplitude rebounds upwards if the spacing is kept increasing (Fig. 6(e)), because the interaction between the bodies

becomes weaker.

Besides the amplitude of the lift, the spectra of the lift also change, which indicates that the frequency of the vortex

shedding downstream of the square cylinder is changed. It is found that the vortex shedding frequency generally

becomes high if the control plate is used. For example, the peak value of the frequency spectrum is around 0.063Hz,

corresponding to a Strouhal number of 0.126 for the flow without control, whereas the peak value is around 0.096Hz,

corresponding to a Strouhal number of 0.192 when s=D ¼ 1:0 with h=D ¼ 0:3. The vortex-shedding frequency is also
changed with position of the control plate. The oscillation exhibits a single frequency if the flow is without control

(Fig. 6(a)) or the control plate is near to the cylinder (Figs. 6(b) and (c)). When the control plate is used at s=D ¼ 2:5
(Fig. 6(d)), there are 2 prominent frequencies in the lift spectrum. As the spacing is further increased to 3.0 (Fig. 6(e)),

the 2 dominant frequencies of the lift spectrum are more notable, and the lift coefficient becomes irregular. The

waveform of the lift signal arises from the complex interaction of the 2 rivaling frequencies. The multi-frequency

characteristic is due to the 2 Kármán vortex streets, from both the square cylinder and the control plate.

Fig. 7 shows the vorticity contours of the flow controlled by a plate positioned at s=D ¼ 3:0 with various heights.
When h=D is from 0.1 to 0.7 (Figs. 7(a)–(f)), alternate vortex shedding behind the square cylinder is observed. The width

of the Kármán vortex street becomes gradually narrower as the control plate height increases. When h=D ¼ 0:8
(Fig. 7(g)), the vortex shedding becomes very weak. Increasing the control plate height further to h=D ¼ 0:9 (Fig. 7(h)),
the alternating vortex shedding disappears in the wake of the cylinder, and the flow is almost steady. This indicates that

the vortex shedding behind the square cylinder is effectively suppressed if the control plate is placed at a suitable

position with proper height. Vortex shedding behind the square cylinder is observed again when the control plate height

is h=D ¼ 1:0 (Fig. 7(i)).
Moreover, control plate height has direct influence on the wake downstream of the control plate. This results in a

change of in-flow towards the square cylinder. It is well known that the flow pattern in the wake of a bluff body is

related to the Reynolds number. When Re is low, no Kármán vortex street can be detected in the wake of the body.

When Re is above a certain value, a Kármán vortex street is visible in the wake of the bluff body. The critical Reynolds

number for a Kármán vortex street to be formed from a square cylinder is given as 70 and 54 by Okajima (1982) and



ARTICLE IN PRESS

500 600 700 800 900 1000 1100 1200

100

150

200

250

500 600 700 800 900 1000 1100 1200

100

150

200

250

500 600 700 800 900 1000 1100 1200

100

150

200

250

500 600 700 800 900 1000 1100 1200

100

150

200

250

500 600 700 800 900 1000 1100 1200

100

150

200

250

(a)

(b)

(c)

(d)

(e)

no control

s/D=0.5 

s/D=1.0

s/D=2.5

s/D=3.0 

Fig. 5. Flow pattern with control plate of h=D ¼ 0:3 at different positions.

L. Zhou et al. / Journal of Fluids and Structures 21 (2005) 151–167158



ARTICLE IN PRESS

200 225 250 275 300
t

-0.4
-0.2

0
0.2
0.4

C
L

0 0.25 0.5 0.75 1
Hz

200 225 250 275 300
t

-2

-1

0

1
2

C
L

0 0.25 0.5 0.75 1

Hz

0 0.25 0.5 0.75 1

A
rb

itr
ar

y

Hz

0 0.25 0.5 0.75 1

A
rb

itr
ar

y

Hz

0 0.25 0.5 0.75 1

A
rb

itr
ar

y
A

rb
itr

ar
y

A
rb

itr
ar

y

Hz
200 225 250 275 300

t

-0.4
-0.2

0
0.2
0.4

C
L

200 225 250 275 300
t

-0.2

-0.1

0
0.1

0.2

C
L

200 225 250 275 300
t

-0.6

-0.3

0

0.3

0.6

C
L

(a)

(b)

(c)

(d)

(e)

no control

s/D=0.5

s/D=1.0

s/D=2.5

s/D=3.0

Fig. 6. Time histories of lift coefficient and power spectra of fluctuating lift h=D ¼ 0:3.

L. Zhou et al. / Journal of Fluids and Structures 21 (2005) 151–167 159
Klekar and Patankar (1992), respectively. In the present study, it is found that the critical Reynolds number for a

square cylinder is about 70, and the number for a flat plate is about 40. When h=D ¼ 0:1 (Fig. 7(a)), the Reynolds
number of the plate is 25, and there is no alternate vortex shedding behind the control plate. Instead, 2 small stationary

vortices attached to the rear side of the plate are observed. When h=D ¼ 0:2 and 0:3 (Figs. 7(b) and (c)), the Reynolds
number of the plate is 50 and 75, respectively, and a Kármán vortex street is observed in the wake of the control plate.

As the control plate height is further increased (h=D ¼ 0:5�1:0 as shown in Figs. 7(d)–(i)), the flow behind the control

plate again becomes stable, and 2 stationary vortices between the 2 bodies are found. The reason is that even though the

Reynolds numbers are bigger than the critical number at such control plate heights, the limited space between the 2

bodies prevents the Kármán vortex street from forming.

Fig. 8 shows the waveform of the fluctuating lift of the square cylinder and the corresponding spectra for various

control plate heights. Periodic variation of lift with a single frequency is found when h=D ¼ 0:1, 0.5, 0.6 and 0.7
(Figs. 8(a),(d),(e) and (f)), respectively. For these cases, the Kármán vortex street is only observed in the wake of the

square cylinder as shown in Figs. 7(a),(d),(e) and (f). Periodic lift fluctuation with multiple frequencies is found when

h=D ¼ 0:2 and 0.3 (Figs. 8(b) and (c)). For these 2 cases, alternate vortex shedding behind both the control plate and the
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square cylinder is observed, as shown in Figs. 7(b) and (c). The periodic lift fluctuation becomes very weak when

h=D ¼ 0:8 (Fig. 8(g)). When h=D ¼ 0:9 (Fig. 8(h)), the value of the lift coefficient is almost a constant, and no distinct
peak in the spectrum is observed. This is related to the stable wake flow (Fig. 7(h)). A slight periodic lift fluctuation is

observed again when h=D ¼ 1:0 (Fig. 8(i)).
5.2. Pressure distribution on the square cylinder

Fig. 9 shows the distribution of the time-averaged pressure coefficient Cp on the surface of the square cylinder for

different control plate positions with h=D ¼ 0:3. The solid line denotes the pressure coefficient when the square cylinder
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is without control. The remaining lines represent the pressure coefficient on the cylinder when a control plate is used.

The control plate is positioned at s=D ¼ 0:5, 1.0, 2.5 and 3.0. It is found that, when a control plate is used, the variation
of the time-averaged pressure coefficient is smaller than that without the control plate. On the front surface of the

cylinder, the pressure is well suppressed by the control plate. When s=D ¼ 0:5, 1.0 and 2.5, the pressure distribution is
concave, and the pressure decreases with increasing spacing. When s=D ¼ 3:0, the pressure distribution on the front
surface of the square cylinder increases compared to that in other positions, and the curve becomes convex. Despite the

increase in pressure (which is due to the Kármán vortex street forming behind the control plate), the pressure on the

front surface of the cylinder is still smaller than that without the control plate. In addition, when a control plate is used,

the time-averaged pressure coefficient on the rear surface of the square cylinder increases but its magnitude decreases

(note that it is negative). The reason is that the alternate vortex shedding downstream of the square cylinder is

suppressed by the control plate.

It is interesting to note that the experimental investigation on the same problem conducted by Sakamoto et al. (1997)

gave similar results for the effect of a control plate. Although the Reynolds number of the present study (Re ¼ 250) is

different from that of the experimental investigation (Re ¼ 5:6
 104), the pressure distribution on the square cylinder

with a control plate in the experimental study demonstrated similar regularity as the present study. Similar pressure

distribution was also observed in the experimental study conducted by Mahbub Alam et al. (2002) for a flow past 2

square prisms controlled by a flat plate. This is expected since the control plate placed upstream of the square cylinders

play same role in the flow control.
5.3. Reduction of the drag and r.m.s. lift

In this section, the drag acting on the square cylinder and the control plate as well as the r.m.s. value of the lift on the

cylinder are investigated. The drag and lift forces are directly relevant to the flow features around the 2 bodies.

Fig. 10 shows the relationship between the time-averaged drag coefficient Cd and the position of the control plate for

different plate heights. The Cd value of the square cylinder without the control plate is about 1.529, which is shown in

Fig. 10 with a dotted straight line. Drag acting on the cylinder obviously reduces when the control plate is used. The

reduction is due to the change in the in-flow towards the square cylinder. When the control plate is placed upstream of

the cylinder, the cylinder is in the wake region of the control plate. Low pressure in this wake region results in the

reduction of the drag of the cylinder. In addition, the suppression of the Kármán vortex street downstream of the

square cylinder leads to pressure increase in this region, thereby decreasing the drag.

The height of the control plate plays an important role in drag control. As the control plate height increases, the drag

of the square cylinder normally decreases. As shown in Fig. 7, 2 small vortices attach to the control plate when

h=D ¼ 0:1; alternate vortex shedding occurs behind the control plate when h=D ¼ 0:2 and 0.3; 2 large vortices stay
between the 2 bodies when h=D ¼ 0:5�1:0. This indicates that the pressure in front of the cylinder becomes lower and
lower as the plate height increases. In addition, the suppression of alternate vortex shedding behind the square cylinder

normally becomes better as the control plate height increases. Therefore, the drag on the cylinder decreases as the height

increases. When the control plate is high enough, say h=DX0:6, the drag on the square cylinder is negative. This
indicates that the horizontal force acting on the cylinder has changed from a drag to a propulsive force instead.
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Table 1

Maximum drag reduction for different control plate heights

h=D 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

s=D 2.0 2.5 2.5 2.5 2.0 1.5 1.0 0.5 0.25 0.5

Maximum drag reduction 0.473 0.622 0.742 0.856 0.965 1.100 1.177 1.452 1.546 1.456
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Fig. 11. Total drag coefficient versus spacing s=D for various control plate heights h=D.
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Another important parameter for drag control is the spacing between the square cylinder and the control plate. For

each plate height, the appropriate position corresponding to the minimum drag on the square cylinder is found. The

optimum position as well as the maximum drag reduction value ðCd0 � Cd Þ=Cd0, in which Cd0 is the time-averaged drag

coefficient of the square cylinder without the control plate, are shown in Table 1. The maximum reduction reaches

approximately 74%, 96% and 145% for s=D ¼ 2:5 with h=D ¼ 0:3, s=D ¼ 2 with h=D ¼ 0:5, and s=D ¼ 0:5 with
h=D ¼ 1:0, respectively.
Total drag, i.e. the sum of the drag acting on the square cylinder and the control plate is another concern in our

study. Fig. 11 shows the total drag coefficient as a function of the control plate position for different plate heights. The

figure shows that the total drag is generally a decreasing function of the control plate height. However, when the height

reaches a certain level (h=D ¼ 0:9, for the present study), the total drag begins to increase. When h=D ¼ 1:0, the total
drag increases significantly, although the drag on the square cylinder decreases. The increase of the total drag is due to

the increase in drag induced by the plate.

One interesting feature found in the results is that at s=D ¼ 3:0 with h=D ¼ 0:3, the total drag increases significantly.
This is due to the occurrence of the Kármán vortex street behind the control plate (as explained for Fig. 5(e)), which

leads to considerable increase in the drag acting on the plate. In order to confirm this explanation, an additional case at

s=D ¼ 3:5 with h=D ¼ 0:4 is studied. A similar phenomenon is observed, as expected. This phenomenon cannot be

found if there is no Kármán vortex street downstream of the control plate. As the spacing further increases (s=D ¼ 3:5
with h=D ¼ 0:3; s=D ¼ 4:0 with h=D ¼ 0:3; and s=D ¼ 4:0 with h=D ¼ 0:4), the total drag coefficient increases slowly.
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Fig. 12 shows the r.m.s. value of the lift coefficient on the square cylinder versus the position of the control plate for

different control plate heights. The time-averaged lift is almost zero due to the structural symmetry. From these results,

we can conclude that the amplitude of the fluctuating lift acting on the square cylinder is reduced by the control plate.

Both position and height of the control plate have influences on the reduction. For each control plate height, the

amplitude of the fluctuating lift decreases as the spacing increases till the spacing exceeds a certain value, at which

obvious alternate vortex shedding occurs behind the control plate. Generally, for a particular spacing, the amplitude of

the fluctuating lift decreases as the plate height increases. However, when the height reaches a certain value (h=D ¼ 1:0),
the amplitude of the fluctuating lift increases significantly compared to those for other control plate heights considered

in the present study.
6. Conclusions

A numerical study on suppression of fluid forces on a square cylinder in cross-flow controlled by a flat plate has been

conducted. The existence of the control plate changes the flow features in front of the square cylinder totally. The drag

acting on the square cylinder and the total drag acting on the 2 bodies (the square cylinder together with the control

plate) are normally reduced by the control plate. If a control plate is fixed at a position upstream of the cylinder, the

drag on the square cylinder decreases as the control plate height increases. Negative drag on the square cylinder is

achieved if the control plate is high enough. The maximum reduction of the drag acting on the square cylinder and the

optimum position of the control plate are given for a particular control plate height. The total drag coefficient, i.e. the

sum of the drag coefficient of the square cylinder and the control plate, are also generally reduced as the plate height

increases. Although the drag on the square cylinder becomes smaller and smaller as h=D approaches 1.0, the total drag,

nevertheless, increases significantly. The present study has also revealed that the amplitude of the fluctuating lift on the

square cylinder is well suppressed if the control plate is used. The fluctuating lift can be completely suppressed if the

control plate with a certain height is placed at an appropriate position.
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